
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2022 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Javadoc

© 2022 Arthur Hoskey. All
rights reserved.

Javadoc

 Suppose we buy a new device and it comes with a user’s
manual.

 The user’s manual will likely describe the following:

◦ The general purpose of the device.

◦ What each control on the device does.

◦ Other details about how to use the device.

 This user’s manual will not go into detail about the inner
workings of the device.

 It will not be describing the details of what wires are
connected on the inside or how the inner workings are
pieced together.

 There may be another manual specifically designed for
engineers that might describe the inner workings.

© 2022 Arthur Hoskey. All
rights reserved.

User Manual

 A user manual describes how to operate a device.

 For example, a TV user's manual describes how to operate
a TV.

 It does NOT describe the inner workings of a TV.

 For example, it will not give details about the inner
workings of a light-emitting diode (LED) screen.

 A user manual will describe:
◦ How to turn on the TV.

◦ The purpose of each button on the TV.

◦ The purpose of each connector port.

◦ Etc…

© 2022 Arthur Hoskey. All
rights reserved.

TV User's Manual
Page 1 – Turning on/off
Page 2 – Screen settings
Page 3 – Side panel connectors
Etc..

Javadoc Comments

 A Javadoc comment describes methods, classes, and
package from the outside (similar to a user manual).

 For example, there may be a Javadoc comment for a
method of a class. This Javadoc comment will describe
what the method does, its parameters, return type, and
some other data about the method.

 It does NOT describe the inner workings of the code in that
method. It does not describe loops or variable declarations.
This details are irrelevant for user's of the method.

© 2022 Arthur Hoskey. All
rights reserved.

Employee Class Javadoc
Describe what the CalculateSalary
method does and how to use it.
Etc…

Normal Java Comments

 You should use normal comments to describe code that is inside
of a method (inner workings of a method).

 The comment below would be placed inside a method (it is NOT a
Javadoc comment).

// This loop adds up the total salary of all the highest-paid

// employees (salaries less than a 60000 are ignored).

int totalSalary=0;

for (int i=0; i<100; i++)

if (emp[i].getSalary() >= 60000) {

totalSalary = totalSalary + emp[i].getSalary();

}

}

© 2022 Arthur Hoskey. All
rights reserved.

Javadoc

 Javadoc syntax:

/**

Here is a Javadoc comment.

*/

© 2022 Arthur Hoskey. All
rights reserved.

Start Javadoc comment

End Javadoc comment

Java Annotations

Java Annotations

 Java annotations are metadata about the program.

 Annotations are used to:
◦ Give information to the compiler.

◦ Information for software tools that are used to generate code or output
files related to the program (for example, information to generate
HTML Javadoc documents).

◦ Runtime processing information.

 Java annotation start with an @.

@Override

public toString() {

// toString code goes here…

}

© 2022 Arthur Hoskey. All
rights reserved.

The Override annotation indicates that

a method is overriding another method

Javadoc Class Comments and
Annotations

Javadoc Class Comments and Annotations

 Javadoc has many different annotations you can use in
your comments.

 For example:

/**

* This class contains methods to perform mathematical

* calculations

*

* @author Rose Diaz

*/

public class Calculator {

// Calculator class code goes here

}

© 2022 Arthur Hoskey. All
rights reserved.

Specify the author of the class

using the @author annotation

Javadoc Method Comments with
Annotations

Javadoc Method Comments with Annotations
 Parameters and return value get annotations.

 If the method throws an exception that should have an annotation.

/**

* Finds the quotient of the given numbers and returns the result.

*

* @param num Numerator for the division.

* @param den Denominator for the division.

* @return The quotient of the passed in values.

* @throws ArithmeticException Throws exception if the denominator is 0.

*/

public double divide(double num, double den) throws ArithmeticException {

if (den == 0)

throw new ArithmeticException();

return num/den;

}

© 2022 Arthur Hoskey. All
rights reserved.

Description of what method does

Parameter and return value

annotations

Exception annotation

Generate Javadoc HTML
Documents

Generating Javadoc HTML Documents

 To actually generate the HTML files containing your Javadoc
comments you need to run the Javadoc tool.

 To generate the Javadoc go to the menu item
Run|Generate Javadoc.

© 2022 Arthur Hoskey. All
rights reserved.

Generate Javadoc HTML
Documents

View Javadoc HTML Documents

 Go to Window|IDE Tools|Javadoc Documentation.

 This will open a tab named Javadoc in the bottom window inside
NetBeans.

 If you put the cursor on a class or a method in your code (by left
clicking, not hovering) it will show the Javadoc document for that
item in the Javadoc tab.

 You can also open File Explorer and navigate to the
target/site/apidocs/<your package> directory within your project.
The Javadoc .html files that were created when you ran the
Javadoc tool will be there.

 You can open the Files tab in NetBeans and get the full name of
an HTML file (right-click file and choose Properties). Navigate to
the target/site/apidocs/<your package> directory within your
project. Paste the full filename of an HTML file into a browser.

© 2022 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2022 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Javadoc
	Slide 4: User Manual
	Slide 5: Javadoc Comments
	Slide 6: Normal Java Comments
	Slide 7: Javadoc
	Slide 8: Java Annotations
	Slide 9: Javadoc Class Comments and Annotations
	Slide 10: Javadoc Method Comments with Annotations
	Slide 11: Generate Javadoc HTML Documents
	Slide 12: Generate Javadoc HTML Documents
	Slide 13: End of Slides

