
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2022 Arthur Hoskey. All 
rights reserved.



Today’s Lecture

 Javadoc

© 2022 Arthur Hoskey. All 
rights reserved.



Javadoc

 Suppose we buy a new device and it comes with a user’s 
manual.

 The user’s manual will likely describe the following:

◦ The general purpose of the device.

◦ What each control on the device does.

◦ Other details about how to use the device.

 This user’s manual will not go into detail about the inner 
workings of the device. 

 It will not be describing the details of what wires are 
connected on the inside or how the inner workings are 
pieced together.

 There may be another manual specifically designed for 
engineers that might describe the inner workings.

© 2022 Arthur Hoskey. All 
rights reserved.



User Manual

 A user manual describes how to operate a device.

 For example, a TV user's manual describes how to operate 
a TV.

 It does NOT describe the inner workings of a TV. 

 For example, it will not give details about the inner 
workings of a light-emitting diode (LED) screen.

 A user manual will describe:
◦ How to turn on the TV.

◦ The purpose of each button on the TV.

◦ The purpose of each connector port.

◦ Etc…

© 2022 Arthur Hoskey. All 
rights reserved.

TV User's Manual
Page 1 – Turning on/off
Page 2 – Screen settings
Page 3 – Side panel connectors
Etc.. 



Javadoc Comments

 A Javadoc comment describes methods, classes, and 
package from the outside (similar to a user manual).

 For example, there may be a Javadoc comment for a 
method of a class. This Javadoc comment will describe 
what the method does, its parameters, return type, and 
some other data about the method.

 It does NOT describe the inner workings of the code in that 
method. It does not describe loops or variable declarations. 
This details are irrelevant for user's of the method.

© 2022 Arthur Hoskey. All 
rights reserved.

Employee Class Javadoc
Describe what the CalculateSalary
method does and how to use it.
Etc…



Normal Java Comments

 You should use normal comments to describe code that is inside 
of a method (inner workings of a method).

 The comment below would be placed inside a method (it is NOT a 
Javadoc comment).

// This loop adds up the total salary of all the highest-paid 

// employees (salaries less than a 60000 are ignored).

int totalSalary=0;

for (int i=0; i<100; i++)

if (emp[i].getSalary() >= 60000) {

totalSalary = totalSalary + emp[i].getSalary();

}

}

© 2022 Arthur Hoskey. All 
rights reserved.



Javadoc

 Javadoc syntax:

/**

Here is a Javadoc comment.

*/

© 2022 Arthur Hoskey. All 
rights reserved.

Start Javadoc comment

End Javadoc comment



Java Annotations

Java Annotations

 Java annotations are metadata about the program.

 Annotations are used to:
◦ Give information to the compiler.

◦ Information for software tools that are used to generate code or output 
files related to the program (for example, information to generate 
HTML Javadoc documents).

◦ Runtime processing information.

 Java annotation start with an @.

@Override

public toString() {

// toString code goes here…

}

© 2022 Arthur Hoskey. All 
rights reserved.

The Override annotation indicates that 

a method is overriding another method



Javadoc Class Comments and 
Annotations

Javadoc Class Comments and Annotations

 Javadoc has many different annotations you can use in 
your comments.

 For example:

/**

* This class contains methods to perform mathematical

* calculations

*

* @author Rose Diaz

*/

public class Calculator {

// Calculator class code goes here

}

© 2022 Arthur Hoskey. All 
rights reserved.

Specify the author of the class 

using the @author annotation



Javadoc Method Comments with 
Annotations

Javadoc Method Comments with Annotations
 Parameters and return value get annotations.

 If the method throws an exception that should have an annotation.

/**

* Finds the quotient of the given numbers and returns the result.

* 

* @param num Numerator for the division.

* @param den Denominator for the division.

* @return The quotient of the passed in values.

* @throws ArithmeticException Throws exception if the denominator is 0.

*/

public double divide(double num, double den) throws ArithmeticException {

if (den == 0)

throw new ArithmeticException();

return num/den;

}

© 2022 Arthur Hoskey. All 
rights reserved.

Description of what method does

Parameter and return value 

annotations

Exception annotation



Generate Javadoc HTML 
Documents

Generating Javadoc HTML Documents

 To actually generate the HTML files containing your Javadoc 
comments you need to run the Javadoc tool.

 To generate the Javadoc go to the menu item 
Run|Generate Javadoc.

© 2022 Arthur Hoskey. All 
rights reserved.



Generate Javadoc HTML 
Documents

View Javadoc HTML Documents

 Go to Window|IDE Tools|Javadoc Documentation. 

 This will open a tab named Javadoc in the bottom window inside 
NetBeans. 

 If you put the cursor on a class or a method in your code (by left 
clicking, not hovering) it will show the Javadoc document for that 
item in the Javadoc tab. 

 You can also open File Explorer and navigate to the 
target/site/apidocs/<your package> directory within your project. 
The Javadoc .html files that were created when you ran the 
Javadoc tool will be there.

 You can open the Files tab in NetBeans and get the full name of 
an HTML file (right-click file and choose Properties). Navigate to 
the target/site/apidocs/<your package> directory within your 
project. Paste the full filename of an HTML file into a browser.

© 2022 Arthur Hoskey. All 
rights reserved.



End of Slides

 End of Slides

© 2022 Arthur Hoskey. All 
rights reserved.


	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Javadoc
	Slide 4: User Manual
	Slide 5: Javadoc Comments
	Slide 6: Normal Java Comments
	Slide 7: Javadoc
	Slide 8: Java Annotations
	Slide 9: Javadoc Class Comments and Annotations
	Slide 10: Javadoc Method Comments with Annotations
	Slide 11: Generate Javadoc HTML Documents
	Slide 12: Generate Javadoc HTML Documents
	Slide 13: End of Slides

